GOAL

- Regulating the thickness of a nonconductive fiber web across its width and length (rubber, paper, dough, plastic, particle board, etc.)
- Maintaining a precise material thickness (± 0.001 inch).
- Making measurements in the presence of environmental contaminants.

SOLUTION

K D - 2 3 0 6
K D M - 8 2 0 6

Web thickness is controlled by the position of two calender rollers. Kaman’s single-channel sensor is mounted on a shoe that slides across the web as it exits the rollers (see Figure 1). The sensor looks through the nonconductive web to measure the distance to a metal backing.

Kaman’s systems provide a DC analog signal directly proportional to the web thickness. Result: Improved web quality and reduced process costs.

THE KAMAN ADVANTAGE

Good reasons to use the Kaman KD-2306/KDM-8206 measuring systems:

- **Non-contact.** Using eddy current technology, the sensor can measure position without ever touching the target. The result is an extremely reliable system with no moving parts.

- **On-line.** The sensor measures the web thickness as the material exits the rollers. A set point can be triggered to warn when out-of-tolerance conditions are reached.

- **Rugged.** Kaman’s system components — the sensors and a NEMA-12 box used to house the signal conditioning electronics — are unaffected by environmental contaminants.

- **Versatile.** The KDM-8200/8206 non-contact measurement is equally effective for particle board and plastics.

- **Accurate.** The system passively compensates for the temperature shifts of the process environment.

Every application is unique.
Contact Kaman for application engineering assistance.

800-552-6267 | kamansensors.com | measuring@kaman.com

![Figure 1](image-url)